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17.1 BRIEF OVERVIEW OF TRANSITION METAL COMPLEXES
Transition Metal Complexes
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17.1 BRIEF OVERVIEW OF TRANSITION METAL COMPLEXES
Geometry of Transition Metal Complexes

Pd(0) bound to four ligands. !e geometry
of the complex is tetrahedral, and the metal 
atom is sp3 hybridized.

L

L

L

L Cl

Cl

Cl

Cl

Pd(II)L2Cl2
cis isomer

Pd(II)L2Cl2
trans isomer

Square planar complexes of  Pd(II)L2Cl2, Pd(II) is dsp2 hybridized.

L

L

L

L L

L

  Octahedral PdL6 complex
     Pd is d2sp3 hybridized.



17.1 BRIEF OVERVIEW OF TRANSITION METAL COMPLEXES
Formation of  π Complexes

M

     π Complexes with neutral ligands.
The transition metal has a vacant d orbtal, 
the π bond is the electron donor.
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Figure 17.1 Schematic View of Bonding In a π Complex of an Alkene With a Transition Metal
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17.2 THE GILMAN REAGENT
Overview of Gilman Reagents

Figure 17.2 Coupling Reactions of the Gilman Reagent 
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17.2 THE GILMAN REAGENT
Preparation of Gilman Reagents

CH3 Br + CH3 Li + LiBr2 Li

methyl lithium

CH3 Li + CuI Li +

alkyl lithium lithium dimethylcuprate
    (a Gilman reagent)

  2 LiICuCH3 CH3



17.2 THE GILMAN REAGENT
Reactions of Gilman Reagents
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17.2 THE GILMAN REAGENT
Reactions of Gilman Reagents
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17.2 THE GILMAN REAGENT
Oxidative Addition and Reductive Elimination in the Gilman Reaction
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17.3 OVERVIEW OF PALLADIUM-CATALYZED CROSS-COUPLING REACTIONS

Figure 17.3 Cross-Coupling Reactions of Organopalladium Complexes
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17.4 THE SUZUKI COUPLING REACTION
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17.4 THE SUZUKI COUPLING REACTION
Figure 17.4 Structure of the Suzuki Catalyst
!e palladium, Pd(0), atom of the catalyst is at the center of a tetrahedron. 
A triphenylphosphine group (PPh3) is at each corner of the tetrahedron. 
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17.4 THE SUZUKI COUPLING REACTION
Preparation of Aryl Boronic Acids
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17.4 THE SUZUKI COUPLING REACTION
The Catalytic Cycle in the Suzuki Coupling Reaction

Figure 17.5 Catalytic Cycle of the Suzuki Coupling Reaction
Step 1. !e vinyl halide adds to the catalyst in an oxidative addition step. 
Step 2. Hydroxide displaces iodide. 
Step 3. !e base that is present in the reaction medium activates the boronic acid. !e aryl group of the borate anion then adds to the 
catalyst. 
Step 4. Cross-coupling of the aryl and vinyl groups occurs in a reductive elimination step. !e palladium atom of the catalyst returns to its 
original oxidation state, Pd(0), and the cycle continues.  The ligands have been eliminated from the diagram for clarity.
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17.5 THE HECK REACTION
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Figure 17.6 Catalytic Cycle of the Heck Reaction
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17.5 THE HECK REACTION
The Catalytic Steps 1-3 in the Heck Reaction
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17.5 THE HECK REACTION
The Catalytic Steps 4-6 in the Heck Reaction
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17.6 THE SONOGASHIRA REACTION
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Figure 17.6 Catalytic Cycle of the Sonogashira Reaction
!e Sonosaghira reaction couples aryl and alkenyl halides with terminal alkenes. A Pd(0) catalyst, a copper(I) 
catalyst, and an amine base, which is the solvent, are required for the reaction.
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17.7 THE WILKINSON CATALYST: HOMOGENEOUS CATALYTIC HYDROGENATION
Relative Reactivities of Alkenes in Wilkinson Homogenous Hydrogenation

Relative rates of hydrogenation by Wilkinson's catalyst
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Figure 17.8 Catalytic Cycle of the Wilkinson Catalyst
Wilkinson’s catalyst carries out homogenous hydrogenation of alkenes. !e initial rhodium(I) complex undergoes oxidation addition of hy-
drogen to give a rhodium(III) species. After a ligand exchange step, the alkene forms a π complex with the catalyst. !e slow, rate-determining 
step of the reaction is addition of the #rst hydrogen atom to the double bond of the substrate. Reductive elimination releases the product and 
regenerates the catalyst in its +1 oxidation state. 
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17.8 ASYMMETRIC HYDROGENATION WITH CHIRAL RUTHENIUM CATALYSTS
Figure 17.9 1,1’-Binaphthyl, a Chiral Ligand 
Stereoisomers that result from restricted rotation around single bonds are atropisomers. (S)-1,1’-binaphthyl is an example of an atropisomer. 
!e space-"lling model is identical to the ball-and-stick model, but it shows the three-dimensional structure more clearly. !e naphthyl 
groups cannot rotate around each other. !erefore, two nonsuperimposable, mirror-image isomers exist.
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17.8  ASYMMETRIC HYDROGENATION WITH CHIRAL RUTHENIUM CATALYSTS
Noyori Asymmetric Reduction of Ketones
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17.9 THE GRUBBS REACTION: A METATHESIS REACTION FOR ALKENE SYNTHESIS
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17.9 THE GRUBBS REACTION: A METATHESIS REACTION FOR ALKENE SYNTHESIS
The Grubbs Catalyst

Figure 17.10 The Grubbs Catalyst
!e Grubbs catalyst is an organoruthenium complex. !e π bond between carbon and ruthenium is the center 
at which the catalytic reaction occurs.
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17.9 THE GRUBBS REACTION: A METATHESIS REACTION FOR ALKENE SYNTHESIS
The Chauvin Mechanism for the Grubbs Reaction

Figure 17.11 The Chauvin Grubbs Mechanism for the Grubbs Metathesis Reaction
!e ligands of the Grubbs catalyst are omitted from the mechanism for clarity, and the ruthenium atom 
has been replaced with a generic transition metal, M. !e catalytic cycle for the Grubbs reaction with 
two terminal alkenes generates ethene in each catalytic cycle. Ethene escapes as a gas, pulling the reaction 
to completion.
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17.9 INTRODUCTION TO RETROSYNTHESIS: THINKING BACKWARDS
The Terminology of Retrosynthesis
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17.9 INTRODUCTION TO RETROSYNTHESIS: THINKING BACKWARDS
Synthesis of Terpinolene: A Retrosynthetic Analysis- Steps 4-6



17.9 INTRODUCTION TO RETROSYNTHESIS: THINKING BACKWARDS
Synthesis of Terpinolene: A Retrosynthetic Analysis- Steps 1-3

CH2OH

NaBH4

H

O

CH2OH CH2Br

PBr3

O

H
CHO

+
Diels-Alder disconnect



Figure 17.11 Retrosynthetic Scheme for the Synthesis of Terpinolene
!e synthesis would proceed in reverse order; that is, from retrosynthetic step 5 to retrosynthetic step 1. First, a Diels-Alder reaction yields 
the six-membered ring with the methyl group and the aldehyde side chain in the correct positions to give terpinolene. We see in the Grubbs 
disconnect how to convert 1-methyl-4-methylidene-cyclohexene into terpinolene. We need a methylidene group at C-4 of the six membered 
ring to have the reactants we need for the Grubbs metathesis reaction. We can convert the aldehyde group to a methylidene group by a series 
of functional group conversions.
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